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ANALYTICAL AND EXPERIMENTAL STUDY OF THE EFFECTS.
OF WING-BODY AERODYNAMIC INTERACTION ON

SPACE SHUTTLE SUBSONIC FLUTTER

By Richard R. Chipman and Frank J. Rauch

SUMMARY

To determine the effect on flutter of the aerodynamic interaction "be-
tween the Space Shuttle bodies and wing, l/80th-scale semispan models of the
orbiter wing, the complete Shuttle and intermediate component combinations
were tested in the NASA Langley Research Center 26-inch Transonic Slowdown Wind
Tunnel. Using the doublet-lattice method combined with slender body theory to
calculate unsteady aerodynamic forces, subsonic flutter speeds were computed
for comparison.

Aerodynamic interaction was found by test and analysis to raise the
flutter speed in some configurations while lowering it in others, such that
the flutter speed of the complete Shuttle at M = 0.7 was the same as that of a
cantilevered isolated wing. Although at Mach numbers not greater than 0.75 pre-
dicted speeds correlated to within 6% of those measured, rapid deterioration
of the agreement occurred at higher subsonic Mach numbers, especially on the
more complicated configurations. Steady-state pressure distributions were also
measured and computed, revealing similar trends.

Using calculated complete-vehicle modes,, flutter-speed trends were com-
puted for the full-scale vehicle at an altitude of 15,200 meters and a Mach
number of 0.6. Consistent with findings of the model studies, analysis showed
the Shuttle to have the same flutter speed as an isolated cantilevered wing.

INTRODUCTION

The flutter characteristics of an aircraft component can be affected
by aerodynamic interaction between it and other proximate components. Classic
examples, when both components are lifting surfaces, are T-tail flutter
(Ref. l) and wing-tail flutter (Ref. 2). To predict subsonic aerodynamic
forces arising in such configurations, the kernel-function method of Watkins
(Ref. 3) and the doublet-lattice method of Rodden (Ref. k) and of Stark (Ref. 5}



were developed and extended to handle multiple planar and nohplanar sur-
faces. The success obtained in applying these theories to wing-tail configura-
tions is recorded by Sensburg (Ref. 6), Mykytow (Ref. ?), and Triplett
(Ref. 8). Similarly, Chipman used the doublet-lattice flutter analysis
method to correlate successfully with wind tunnel data for pairs of closely
spaced wings such as might be found on the fly-back-booster Space Shuttle con-
figurations (Ref. 9).

The aerodynamic forces arising from the interaction between bodies and
lifting surfaces can also be significant. In the steady-state case, methods
for computing these forces were developed by Woodward (Ref. 10) and Hess (Ref.
11). Rodden and Giesing (Ref. 12) have combined slender-body theory with the
doublet-lattice method to solve the unsteady problem in subsonic flow.

The current Space Shuttle concept features four large, flexible bodies:
the orbiter fuselage, the external tank (ET), and the two solid-rocket boosters
(SRB's). The proximity of these bodies to the orbiter wing admits the possi-
bility of a change in vehicle flutter boundary as a result of aerodynamic
interaction. Consequently, a two-phase study was initiated to obtain analytical
and experimental confirmation of this contention. Reference 13 reports the
first phase of this work: A preliminary design - the Grumman G III - of the •
parallel-burn, Space Shuttle concept was analyzed using Rodden's method (Ref.
12) to determine the anticipated effect of wing-body aerodynamic interaction on
flutter. This report describes the second phase: Comparisons of experimentally
and analytically determined wing-body, interaction flutter effects are made sub-
sonically for a model of a recent design to assess the applicability of Rodden's
method to the Space Shuttle.

In the present study, l/80th-scale semispan models of the Shuttle were
tested for flutter in the Mach number range 0.6 to l.it. Additionally, steady-
state pressures were measured on the wing. Results were correlated with flutter
speeds and pressures predicted using Rodden's doublet-lattice/interaction-
panel method. Various combinations of vehicle components'- wing alone; wing
and orbiter fuselage; wing, fuselage and external tank; and complete Shuttle -
were studied.

Because the analyses of Phase I indicated that forces arising from body
flexibility did not appreciably alter the Space Shuttle flutter speed, the
model bodies in the present investigation were designed to be rigid. Except
for two configurations in which flexible SRB attachments were used, only the
wing was flexible.

A final check of interaction flutter effects on the current Shuttle
was made by calculating flutter speeds using calculated full-scale vehicle
modes which included flexibility on all the bodies.



LIST OF SYMBOLS

b Reference semichord = 0.0572 m
r

c Local chord

CT Lift coefficient
L

C Life curve slope
La

C Moment curve slope
a

C Pressure coefficient

AC Coefficient of the net pressure difference across
a surface or "body

K
, Net pressure coefficient distribution on the slender

body elements

AC I Net pressure coefficient distribution on the inter-
' i action panels

N
W

[Dww]

Net pressure coefficient distribution on the wing
panels

Downwash on the interaction panel collocation points
caused by unit pressures on the interaction panels

Downwash on the interaction panel collocation points
caused by unit pressures on the wing panels

Downwash on the wing collocation points caused by
unit pressures on the interaction panels

Downwash on the wing collocation points caused by
unit pressures on the wing panels

ET External tank

f Frequency

Downwash on the interaction panel collocation points
due to unit pressures on the slender body elements

Downwash on the wing collocation points due to unit
pressures on the slender body elements



LIST OF SYMBOLS (continued)

h Modal deflection

k Reduced frequency = bu/U

M Mach number

m Mass of exposed wing = 0.0525 kg

q Dynamic pressure

R Slender body radius

s Exposed semispan

SRB Solid rocket booster

U^ - Free stream velocity

V Flutter speed

v Volume of frustum of a cone encompassing the exposed
W wing = 0.00133 m3

V-g-f Velocity-damping-frequency

W I Prescribed downwash at the interaction panel colloca-
•I tion points

W I i Prescribed downwash at the wing collocation points

x Streamwise coordinate

Ax Distance that the center pressure lies aft of the local
leading edge

y Spanwise coordinate

z Vertical coordinate
!

a Angle of attack or incidence

CL, Body incidence
E>

a Wing incidence

a Ratio of air density in tunnel to that at sea level



LIST OF SYMBOLS (continued)

Mass density ratio =
PSLVW

SL Density of air at sea level

w Circular frequency

o> Reference frequency = UjO Hz

( )' Derivative in x'direction

( )" Second derivative in x direction

TEST APPARATUS

Models

Semispan models of the current Shuttle design shown in Figure 1 were
built for flutter testing. They consisted of rigid fairing replicas of the
or"biter half-fuselage, the half external-tank (ET), and the solid rocket
"booster (SRB) in proper proximity to a flexible orbiter wing. As can be seen
in Figure 2, the wing is a double delta with an inner-panel leading-edge sweep
of 79° i an outer-panel sweep of ̂ 5°, and an aspect ratio of 2.1. The crank in
the leading edge occurs at a station 25% of the distance from the root to the
tip. The wing model consisted of aluminum spanwise-tapered core plates with
cutouts, designed to match the torsion-to-bending frequency ratio of the full-
scale wing.

Figure 3 shows the wing in various stages of assembly. On the core,
balsa wood was affixed and shaved to a 12% maximum thickness-airfoil shape
representative of the Shuttle. Wing camber and twist were not modelled; the
model section was made symmetrical. To eliminate structural coupling, the rigid
geometrically scaled fairings representing the fuselage, ET, and SRB com-
ponents were fastened rigidly to a splitter plate located at the mid-vehicle
plane. This assembly is shown in Figure h. A second splitter plate was made
which could be located at the wing root when the body fairings were removed to
study flutter of the isolated wing end-plated at its root.

Two sets of flexible connectors were fabricated, each of which could be
substituted for the rigid fasteners linking the SRB to the ET. With these
flexures, SRB pitch and heave modes could be attained. One of the sets was



designed such that the frequencies of these modes in model scale were equal to
those of 8KB pitch and vertical bending of the nominal Shuttle design. With
the second set, the frequencies were chosen to be closer to wing torsion so
that the likelihood of interaction would be greater. Table I summarizes the
frequencies of these and the primary wing modes.

A rigid wing with 38 pressure taps was constructed to measure steady-
state pressures. Provisions were made on the mounting plate to pitch each
configuration either 0 of -3°. With pressure data from each of these two
angles of attack, the primary effects of wing thickness could be removed
by subtraction of the two pressure distributions.

Instrumentation on Models

Each flexible wing was instrumented with strain gages which, through
their response to bending and torsional motions, were used to detect the onset
of flutter and to measure flutter frequency. Additional gages were mounted
on the SRB flexures to detect SRB excitation.

The pressure taps of the rigid pressure wing were connected to trans-
ducers that measured the difference between the manifold pressure and the
pressure on the wing surface.

Wind Tunnel

Flutter and pressure tests were conducted in the NASA Langley Research
Center 26-inch Transonic Slowdown Wind Tunnel for a Mach number range of 0.6
to l.U. During the flutter runs, an oscillograph was used to record the
following items:

• Output of model strain gage and magnetic coil circuits

• Total test section pressure (P )

• Settling chamber temperature (T )

• Static test section pressure (P )
s

• Reference trace used in determining P , P and T trace deflection& o' s o
• Movie camera correlation trace.

A high speed movie camera was used to obtain a visual record of model behavior
during each flutter run.



For each pressure run, the following information was placed on mag-
netic tape:

• Output of pressure gage circuits that record wing pressure data

• Total test section pressure (P )

• Static test section pressure (P0)o
• Temperature (TO)

• Manifold pressure (?>,)•

TEST PROCEDURES AND DATA REDUCTION

Vibration Survey

Prior to wind-tunnel testing, each wing model was subjected to a
vibration survey. Modal shapes, frequencies and damping coefficients were
.determined for one model, and the subsequent models were checked for likeness
of frequencies and damping coefficients. Noricontacting excitation and mea-
surement systems were utilized to assure distortion-free mode shapes and
frequencies. The output of a noncontacting inductance-type pickup was con-
ditioned, and displayed on a vacuum tube voltmeter and oscillograph to extract
mode shapes and damping data. During the survey, the models were rigidly
clamped at the root fto simulate the tunnel installation.

Shown in Figure 5 are the locations of the concentrated mass points
and the points at wriich the modal data were measured. Table II gives the
coordinates of these points and the calculated masses. Figure 6 presents
the measured mode shape data in tabular and graphic form.;

Similarly, for each set of flexible attachments, modal data were mea-
sured on the SRB for the two lowest frequency modes. These modes are pre-
sented in Figure 7. Because of the inherent flexibility of the SRB model,
the modes include a significant amount of bending as well as the intended
pitching and heaving motions. The frequencies of these and the measured wing
modes are summarized in Table I.

Flutter Tests

Before each tunnel run, the models to be used were visually examined
for signs of damage due to previous runs. In addition, after being installed
in the tunnel, the wing model was excited, and oscilloscograph records of the
strain gage outputs were monitored to check frequencies and dampings of the
first four modes.



On the basis of the results of previous runs, a desired tunnel opera-
ting "path" was selected for the run. This path was followed until either
the tunnel air supply was exhausted or.flutter was detected visually. Several
runs following different paths were made on each configuration to determine
a boundary of flutter speed vs Mach number.

As shown in Table III, flutter boundaries were determined for six con-
figurations: the isolated wing endplated at its root, the orbiter (wing and
fuselage), the orbiter and external tank, the full-up. Shuttle (orbiter, tank
and SRB) with rigid interstage attachments, the full-up Shuttle with the
nominal flexible attachments and the full-up Shuttle with a second set of
flexible attachments.

Flutter points were initially determined from the oscillograph records
and visual observations during the run, and then either confirmed or adjusted
by subsequent examination of the movie data. The flutter point was taken as
the point during the run where the model circuit traces indicated a frequency
regularity and/or significant increase in the model vibrational amplitude.
Tunnel data converted to the parameters Mach number, air density ratio, and
dynamic pressures are presented in Table IV.

For each flutter point (or significant stable point), the Mach number
and dynamic pressure are presented in Figure 8. In addition to the data
presented in Table IV, several non-flutter points during each run were studied
to determine the tunnel path taken. These paths are plotted in Figure 8 and
help define the suggested flutter boundaries indicated.

Pressure Tests

After the rigid pressure wing was installed in the wind tunnel to-
gether with appropriate body models, the-pressure lines were connected to
transducers and calibration was performed.

During each run, the tunnel was programmed to quickly attain a pre-
chosen combination of Mach number and dynamic pressure. So that the flow
would have time to stabilize, this point was maintained for 3 seconds before
any data were collected. Pressure was sampled five times at each orifice
and then a constant Mach number path was followed to a second, higher dynamic
pressure at which the pause and sampling were repeated. The data were stored
on magnetic tape and later reduced by digital computer.

For each of the three configurations'noted in Table III, pressure
measurements were made at M = 0.6, 0.8, 1.0 and 1.2, once for the vehicle at
an angle of. attack equal to 0° and once for the vehicle at a -3° angle of
attack. The data were automatically plotted as chordwise distributions of C
at both the upper and lower surfaces at each of the four spanwise stations,
y/s = 0.1, O.U, 0.7 and 0.9. Only'the subsonic data were further reduced and
studied for this report.



After inspecting the data and-eliminating points where gages were
either clogged, damaged, or otherwise unreliable, it was determined that data
on the outer portion of the upper wing surface were largely unusable but
that the lower surface data were acceptable at most locations.

To determine a pressure difference across the wing due to the angle of
attack, one would normally subtract the lower surface pressure from the
upper surface pressure measured at the angle of attack, and from this incre-
ment subtract a similar increment measured at zero incidence. This computation
can be expressed:

AC
P
 (a)= (C

P, u
(a)-CP,*

 (a)>- (CP,u
 (0) ' °p,* <°»

where AC (a) is the pressure difference at angle of attack,

C is the pressure coefficient on the upper surface,

and C
p,£ is the pressure coefficient on the lower surface.

Since the outer upper-surface pressures were unreliable, an alternate proce-
dure was used for y/s =0.7 and 0.9 and checked at y/s = O.k. If a flow obeys
the assumptions of linear potential theory,.the effect that a small angle of
wing incidence has on pressure is equal and opposite on opposite sides of a
thin airfoil - even in the presence of geometric asymmetries. Thus, one could
determine the total pressure difference at angle of attack by the calculation:

ACp (a) = (Cp)U(a)-Cp5u.(o))-(Cp>£ (a) - C^ (o»

= -2 (Cp,l (o)--Cp,£ (°)}-

The validity of this procedure can be appraised by inspecting Figure 9,
which' shows that the angle of attack produces very similar measured pressure
changes on the upper and lower surfaces at the inboard chord where y/s = O.U.
Since the inner chord (y/s = O.l) is close to the reflection plane and the
bodies, viscous effects would be expected to be'larger here than on the outer
chords. Consequently, the pressure difference was computed directly for this
chord and use was not made of the above approximation. The resultant pres-
sure distributions are shown in Figures 22 through 25 and discussed in a sub-
sequent section.



THEORY

Aerodynamic Idealization

Using the doublet lattice method of Ref. 12, aerodynamic influence
coefficients were calculated at various subsonic Mach numbers for the configu-
rations studied. As depicted in Figure 10, the aerodynamic idealization con-
sisted of panels of doublets modeling the wing and the idealized surfaces of
the bodies in the vicinity of the wing - where interaction effects would be
expected to be largest - and of axial doublets representing the bodies
themselves.

The strengths of the axial doublets were determined separately, using
slender body theory:

R
AC = 2^Ro >]

2b
R h \ + 2Tr--i J R 'h + R h1

2 o (1)

while the strengths of the body surface doublets were determined jointly with
the wing doublets. .To introduce coupling between the two solutions, the
boundary conditions.to be satisfied by panel doublets were modified by
the downwash created by the axial doublets:

.AC
p,w

AC

D D _
w,w w,I

DI ,vDI , I

-1
w
w •w,B

AC
p,B

(2)

Ignoring the orbiter fin for the purposes of this study, only the wing, the
orbiter fuselage, the external tank.and the solid-rocket booster were modeled.

Vehicle Idealization Studies

Wing. - To determine a suitable aerodynamic grid for the analyses,
pressure distributions'were calculated for several idealizations of the Shuttle
wing double-delta platform as shown in Figure 11. Pressures, spanwise lift
distributions, and generalized aerodynamic forces were calculated for a zero-
frequency pitch mode corresponding to a wing incidence of one radian at M := 0.7'
Additionally, a control surface rotation mode was studied.

10



As can be seen in Figure 12, grids 1 and 2 give unsatisfactory
pressure calculations on the highly swept inner wing panels . Whereas erratic
pressures arise from these idealizations, grid 3 results in smooth distribu-
tions .

Chordwise and spanwise variations in the number of boxes in grid 3 were
performed as indicated in Figure 11. A major geometrical feature of the wing
is leading crank located at 25$ of the exposed semispan. As shown in Figure
13,.the panel distribution of eight chordwise, three spanwise inboard of the
leading edge crank, and seven spanwise outboard of this crank (grid 3.H) gives
smooth converged pressures for both wing pitch and control surface rotation;
thus, it is used to analyze the full-scale Shuttle with complete vehicle modes.
When control-surface modes need not be represented, fewer lattice boxes are re-
quired. Hence, grid 3-5» which has only six chordwise panels and gives the
same pressure distribution for a pitch mode as does grid 3.^, is used as the
aerodynamic idealization for the wing. Smooth oscillatory pressures calculated
using this grid are shown in Figure lit for pitch about the wing apex. Notice
the growth of the imaginary part of the pressure as frequency is increased.

Bodies.. - The representation of the orbiter fuselage, the external tank,
and the solid-rocket booster consisted of axial elements, strengths of which
were calculated by slender body theory, and of panels of doublets applied" to
idealized surface of each body to account for aerodynamic interaction between
the wing and bodies. In Ref. 13, idealization studies were made to determine
a distribution of slender body elements and interference panels that would give
converged generalized aerodynamic forces for the flutter study of a Shuttle
configuration. Essentially the same modeling was used in this study.

To appraise effect of the presence of the orbiter fuselage on lift
distribution of the wing, steady state lift calculations were made for wing in
pitch with various root conditions and compared to the lift obtained with
pitched orbiter fuselage in place. In all, five conditions were studied:

(1) Reflection plane located at the wing root, endplating it as
in the tested wing alone configuration

(2) Reflection plane located at the vehicle centerplane; the root is
free

(3) Reflection plane located at the vehicle centerplane; gap between
the root and the centerplane is filled with a rigid plate at zero
incidence

(H) Root condition same as in case 3 but rigid plate is at the same
angle of incidence as the wing

(5) Pitched fuselage is modelled by slender body elements and
interference panels.

Figure 15 shows resulting lift distributions. In case (2), the lift
correctly falls to zero at the root because of the gap. Case (3) has a higher
wing lift than (2) because the plate supports lift but has lower lift than (l)
because the reflection plane in case (l) is more effective than the plate. When

11



the plate is pitched, it gives rise to even higher lift as shown in case (U).
When in case (5) the fuselage is modelled, the lift on the wing is logically
more than in case (3) and less than in case (l) because the side wall of the
fuselage acts as an abbreviated reflection plane.

Because the bodies on the Shuttle have blunt or truncated aft ends and
the orbiter has the rather small ratio of length to diameter of 5-^* the
adequacy of slender-body theory is questionable. To resolve this question,
calculations of the lift and moment of an orbiter fuselage were made and com-
pared with available unpublished low-speed wind tunnel test data. Al-
though this fuselage is not the same design as the current Shuttle, it has al-
most -the same length to diameter ratio (5-6) and the same truncated aft end.
In this analytical idealization, this latter feature was represented by assum-
ing the body radius to remain constant at the end rather than returning to
zero. A comparison of theoretical and experimental aerodynamic coefficients
is given in Table V. The correlation is fairly good: The lift coefficients
agree within 7% and the moment coefficients within 15%.

Pressure Calculations

To compare with the distributions measured on the various configura-
tions at a constant angle of incidence to the flow, steady-state pressures
were calculated on the wing for these cases. In this simple case, the slender-
body pressures of equation 1 reduce to:

AC
p,B (3)

Flutter Model Analyses

Using modes measured in the vibration survey, flutter solutions-were
determined for the models tested. For configurations 2 through k of Table III,
the rigidity of the bodies causes the slender body pressure to vanish so that
equation 2 becomes:

AC
p,w

AC

D D _w,w w,I

DT D_I,w 1,1

-1
ww

12



In configurations 5 and 6, the SRB:is allowed to heave and pitch and,
hence, gives rise to slender-body pressures as calculated by equation 1. Since
the lower frequency mode in each case has very little curvature, the h" term is
zero for this mode. • • -.. . .

In configuration 1, the-base case, there are no bodies to give rise
to .aerodynamic interaction. In this case"equation h is-further simplified to:

AC D
w,w

-1 W
w

(5)

Full-Scale Flutter Analyses

Calculated symmetric normal modes for the Space Shuttle were obtained
from Ref. lh. Table VI lists the frequencies of the lowest 30 modes together
with a brief description of each. Only 20 of these modes, as designated in.
this table, were used in a flutter analysis of the'full-scale vehicle. The
modes ignored were those that were aerodynamically inactive, .such as longi-
tudinal modes. Since the modes entail body motions of a general type, all
the terms in equations 1-and 2 are needed in calculating the unsteady pres-
sures and, hence, the associated generalized aerodynamic forces required in
the flutter analysis.

MODEL FLUTTER RESULTS

Analytical Results

Shown in Figures 16 and IT are representative analytical plots of damp-
ing and frequency as a function of airspeed for the .isolated wing and the
Shuttle. From V-g-to plots such as these, flutter-speeds and frequencies were
determined for the various configurations at several values of air density over
a range of subsonic Mach numbers. The flutter mechanism is the coupling of the
fundamental wing bending mode with the first wing torsion mode. Although five
modes were used in the flutter calculations for all the various configurations,
sample calculations on the isolated wing made including only these two modes
gave rise to the same flutter speeds.

For the isolated wing and for the orbiter, Figure 18 shows the result-
ing trends in flutter speed. Both .configurations have basically the same
trends: Flutter speed varies little with M until high subsonic Mach numbers
are reached, where the variation experienced is strongly dependent on' air
density. In correlation with test data, consequently, the density ratio must
be matched by analysis. Flutter frequency exhibits a similar trend but is not
as dependent on air density.

13



Flutter Boundaries at Test Conditions

Shown in Figure 19 (a) are the flutter speed and flutter frequency
indices measured on the isolated wing. Also shown are the analytical results
obtained at the test conditions. At Mach numbers below 0.9, the analytical
flutter speed prediction is at most 6% conservative, while the predicted
flutter-frequencies are 5% low at worst. Hence, the correlation in this base
case is excellent.

Since the minimum measured flutter speed is only k 1/2% lower than the
measured flutter speed at M = 0.65, the wing can be said to have almost no
transonic dip. Because the recovery in flutter speed is sharp, the level of
the supersonic flutter speed was not ascertained.

The flutter speed and flutter frequency indices determined for the
orbiter configuration are presented in Figure 19(b). Both experiment and anal-
ysis show that subsonic flutter speed is higher than that of the wing alone.
The accuracy of the predicted flutter speeds is still within 6% and that of the
frequencies is within Q% . Although the transonic dip of 1% is slightly more
than occurs on the wing alone, it is still very shallow.

As can be seen in Figure 19(c), agreement between test and analysis
begins to deteriorate on the orbiter/tank configuration. Up to a Mach number
of 0.8, the flutter speeds correlate within J%, but at M = 0.9 the analysis
is 11$ conservative.

On the full-up Shuttle configuration with rigid SRB attachments, the
Mach number at which correlation, deteriorates is seen in Figure 19(d) to shift
lower. At M = 0.75, the analytical flutter speed is only 6 1/2% low; but at
M =' 0.8 and 0.85 the discrepancies are 9% and 13%, respectively.

Figures 19(e) and 19(f) present the flutter boundaries for the full-up
Shuttle with flexible SRB attachments. At any given Mach number and density
ratio, the flutter speeds calculated by analysis were the same for these two
configurations as for the Shuttle with rigid SRB attachments. Hence, when
adjusted to the test conditions, the analytical flutter speed boundaries for
these three configurations are roughly the same. The test boundaries, however,
are lower when flexible attachments are used.

Comparison of Flutter Boundaries

To compare realistically the flutter boundaries of the various config-
urations, it is necessary first to adjust the test data to a constant air
density, since, in the blowdown wind tunnel, different operating points in gen-
eral correspond to different densities. This scaling was made by multiplying



the test flutter speed "by the ratio of the analytical flutter speed at the
desired density to that at the test point density. To minimize the amount of
scaling to be made, the "boundaries were adjusted to a typical tunnel density
of three times that at sea level. Figure 20 shows the resulting test flutter
boundaries.

At moderate subsonic Mach numbers (M .<_ 0.75),- the orbiter flutter speed
is 1% higher than that of the wing, the orbiter/tank flutter speed is 3%
higher than that of the wing and the full-up Shuttle is only 1% higher. No
appreciable transonic dip occurs on any configuration. Although all config-
urations show a sharp flutter speed increase as Mach one is approached, this
recovery occurs at increasingly lower Mach numbers as the tank and the SRB
are added to the vehicle. This trend causes the order of the flutter speeds
to change at the high subsonic Mach numbers so that this order becomes: wing
alone lowest, orbiter higher, orbiter/tank higher still, and complete Shuttle
highest. This shift in the recovery can probably be attributed to higher
local Mach numbers on the wing in the vicinity of the tank and SRB when these
components are added to the orbiter.

The analytical flutter boundaries at the same air density of three
times that at sea level are shown in Figure 21. At moderate subsonic Mach
numbers, the trend is the same as revealed by experiment. As can be seen in
Table VII, the predicted percentage differences in the flutter speeds of the
various configurations are quite close to those measured at these Mach numbers.
Comparison of Figure 20 and 21, however, shows that the transonic trends pre-
dicted do not agree with experiment: The theoretical recovery is less and more
gradual than experienced in the tests and the presence of the tank and the SRB
delay rather than speed the recovery. These failings of the analysis are not
unexpected, since the theory assumes that Mach number is constant throughout
the flow field.

The adjusted flutter boundaries for the configurations with flexible
SRB attachments are presented in Figure 22. These flexibilities cause 2% and
h% decreases in the measured subsonic flutter speed relative to the rigid
case, whereas the analytical flutter speed is unaffected. As seen in Table I,
the nominal SRB modes are close in frequency to the lowest wing mode, which
analysis shows couples with the second wing mode to produce the flutter in-
stability; therefore, an effect by the SRB modes on the flutter speed is not
unreasonable. For the tuned flexure, the frequencies of the SRB modes are
close to the flutter frequency and the even greater effect on the flutter
speed should be'expected. The cause of the theory's failure to predict this
effect is unknown. However, studies of the Shuttle by Ericsson and Reding in
Ref. 15 have shown that flow separation occurs at the shoulder of the SRB
nose. It is conceivable that, when the SRB oscillates, at frequencies close
to the wing flutter frequency, shed vortices impinge upon the wing causing
significant deviations from the unsteady pressures expected from potential
theory. It is also possible that, since the axial doublet strengths are not
determined simultaneously with the panel doublet strengths, the present method
is not adequate for calculating interaction effects when the body is allowed
to oscillate.
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PRESSURE STUDY RESULTS

Base Case

For the isolated model wing end-plated at its root, Figure 23 shows
good agreement between the calculated and measured steady-state pressure
distribution, ACp, when the wing is pitched 3°. Here, and in more detail in
Figure 2h, even the spillover lift from the outer.panel onto the inner panel
of the double-delta wing platform can be seen to be predicted.

Correlation on Wing-Body Configurations

For the thr.ee configurations for which steady-state pressures were
measured, Figures 2U and 25 give a comparison of .the calculated and measured
.distributions for M = 0.6. Comparison of the wing and the orbiter/ET trends
from both test and analysis shows that replacing the root-chord reflection
plane by the orbiter and tank lowers the pressure at the inboard leading .edge
of the wing; this effect diminishes outboard and aft.. Agreement between
test and analysis is good, with analysis overestimating the inboard pressure
drop slightly. ' Similarly,- the presence of the SRB lowers pressure further .
at the inboard leading edge and- the amount of this decrease is again predicted
fairly reliably. At the inboard trailing edge,, both theory and test1 show
that the SRB causes a pressure increase. Outboard the SRB causes the pressure
to drop, but analysis underestimates this decrease. Overall the correlation
between test and analysis is good; every qualitative feature of the measured
distributions is .matched.

Figures 26 and 27 show, a similar comparison of pressure at M = 0.8. .
Generally, the analytical trends are the same-as for M = 0.6. The measured
data, however, does not agree well with these trends. Outboard, the SRB
decreases the pressure more than predicted. Inboard, although the leading
edge pressures agree with theory, pressures on the. remainder of the chord
are higher for the- more complex configurations than for the isolated wing -
the reverse of the predicted trend. This lack of agreement is consistent
with the degradation of the flutter correlation on the complex configurations
at high subsonic Mach numbers and can probably be attributed to transonic flow
phenomena not represented by the theory. There is also the possibility that
flow field is being complicated by flow separation and shed vortices.

Configurational Trends

Comparison of pressure distributions for the various configurations
with the flutter results seemingly leads to contradictions: Figure 28 shows
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that the spanwise loadings for the isolated wing and the orbiter are almost
equal as are the centers of pressure. It might be concluded from this that
the flutter speeds for these two configurations also should be the same;
nevertheless, both test and analysis have shown the orbiter flutter speed
to be higher. Also, since in the presence of the external tank and SRB's the
loadings decrease and centers of pressure move aft, the flutter speed should
increase; however, experimental and analytical flutter results show a flutter
speed decrease.

Explanation for this confusion is that these steady-state pressures
were measured and calculated for configurations where the entire vehicle was
at an incidence angle to the flow. When steady-state pressures were calcu-
lated with only the wing at incidence to the flow and the various bodies not
inclined to the flow, trends that do support the flutter results are obtained.
The resultant spanwise loadings and centers of pressure from such calculations
are shown in Figure 29. The following conclusions are drawn:

• Comparison of the wing alone and orbiter configurations shows that
replacing the end-plate at the wing root by the rigid, unpitched
fuselage extending to the vehicle 'centerline causes the loading
to naturally decrease and the center of pressure to move slightly
aft. These are stabilizing trends and a higher flutter speed
should be expected on the orbiter.

• The addition of the external tank causes the loading to increase
almost up to the original level of the end-plated wing. The flut-
ter speed should be lower than that of the orbiter and slightly
higher than that of the wing.

• The addition of the SRB (which one can envision as acting somewhat
like a ground plane) raises the loading to a higher level than
that of the end-plated wing. This effect should lower the flutter
speed again and quite possibly, if the slight aft change in center
of pressure does not entirely negate it, drop the flutter speed
below that of the wing.

These predictions are entirely consistent with the findings of the flutter
analyses.

FULL SCALE FLUTTER RESULTS

Using the 20 symmetric normal modes listed in Table VI and the aero-
dynamics grid 3-^ shown in Figure 11, flutter speeds we're calculated for the
isolated wing, the orbiter, and the Shuttle at a Mach number of 0.6 and an
altitude of 15,200 m. The full scale vehicle geometry is shown in Figure 1.
The resultant V-g-f plots are shown in Figures 30, 31 and 32.
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While the flutter speeds of the isolated wing and Shuttle are practi-
cally identical, the flutter speed of the orbiter is 3% higher. This is the
same trend as was found on the models. On the full Shuttle, two marginal
instabilities occur at speeds less than 685 knots but as little ab 1% struc-
tural damping .stabilizes these roots at all speeds less than 685 knots.

Additional analyses were performed eliminating selected normal modes.
As shown in Figure 33, a flutter speed that is only 2% different from that
obtained using 20 modes can be calculated using only five: wing 1st bending,
inboard elevon rotation, fuselage pitch (on interstage fittings), fuselage
vertical translation (on interstage fittings), and wing 1st torsion.

CONCLUSIONS

• For general combinations of large rigid bodies in proximity to lifting sur-
faces, the doublet-lattice/interaciton-panel method successfully predicts
the effects of aerodynamic interaction on the flutter speed of the surface
at moderate subsonic Mach numbers (M < 0.75).

• More investigation is needed to determine if the effect of flexible or flex-
ibly supported bodies on the oscillatory pressures and, hence, on the
flutter speed of a proximate lifting surface can be successfully predicted
by the present analysis or a modification of it.

• Steady-state pressures on a lifting surface due to the interaction between
• it and nearby bodies can be adequately calculated by the present method at
M <.T5.

• The subsonic flutter speed (M <-75) of the wing in the presence of all the
bodies on the Shuttle is practically the same as that of the wind end-plated
at its root. The subsonic flutter speeds of intermediate configurations,
such as the orbiter, are higher than that of the wing.
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TABLE I.- 1/80TH-SCALE SHUTTLE MODEL

FREQUENCIES

MODE FREQUENCY, Hz

WING 1st BENDING

WING 1st TORSION

WING 2nd BENDING

WING 2nd TORSION

WING 3rd BENDING

SRB PITCH
NOMINAL FLEXURE
TUNED FLEXURE

SRB HEAVE
NOMINAL FLEXURE
TUNED FLEXURE

169.1

449.5

548.0

912.1

1045.9

124.0
222.0

242.9
438.0
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TABLE II.- CALCULATED MASS & NODE POINT LOCATION

VIB
NODE

31
32
29
33
30
21
34

22
12
35

23

13
6

36

24

14

7
5

37

25

15

8

1

38

26

16

9

2

39

27
19
40

28
20
17

10

3

18

11

4

MASS
POINT

1
2'
3'
4'

5*
6*
7*
8*

9
10*
11*
12*
13
14*

15
16*
17*
18*

19
20*
21
22*
23 •
24*

25* "

26*
27 .
28*
29 '
30*
31
32*

33
34*
35*

36
37*
38
39*
40
41*

42
43*
44*

45
46*
47*
48*
49
50*
51*
52*
53

54*

55

56*
57*
58

59*

60

61*

X

METERS

0.2505
0.2505
0.2861
0.2861
0.3302
0.3302
0.3302

0.3543

0.3543
0.3543
0.3543

0.3781
0.3781
0.3781
0.3781
0.3781
0.3781
0.3966
0.3966
0.3966
0.3966
0.3966 ,
0.3966
0.3966

0.3966
0.4150
0.4150
0.4150

0.4150
0.4150
0.4150
0.4150
0.4150
0.4150
0.4308

0.4308
0.4308
0.4308

0.4308

0.4308
0.4308
0.4308
0,4308
0.4416
0.4416
0.4416,
0.4416
0.4591
0.4591
0.4591
0.4591

0.4416

0.4416

0.4416
0.4416

0.4416
0.4543
0.4543

0.4543

0.4543

0.4543

INCHES

9.86

9.86

11.26
11.26
13.00
13.00
13.00

13.95

13.95
13.95
13.95
14.89
14.89
14.89
14.89
14.89
14.89
15.61
15.61

•15.61
15.61

. 15.61
15.61 •

1 15.61 .,

'15.61
16.34
16.34'
16.34 '•

; 16.34'
16.34

: 16.34
16.34
16.34
16.34

16.96

1696

16.96 .

16.96

16.96

16.96
16.96

16.96
16.96
17.39
17.39

17.39
17.39
18.08
18.08
18.08
18.08

17.39
17.39
17.39
17.39
17.39
17.89
17.89

17.89
17.89
17.89

Y

METERS

0.0397
0.0460
0.0397
0.0524

0.0397
0.0524
0.0651

0.0397
0.0524

0.0651
0.0778
0.0397
0.0524

0.0651
0.0778
0.0905
0.1032

0.0397
0.0524

.-0:0651

0.0778
0.0905 .
0.1032
0.1159

0.1286
0.0397
0.0524

0.0651
0.0778
0.0905
0.1032
0.1159
0.1286
0.1413

0.0397' -
0.0524 •

0.0651

0.0778

0.0905
0.1032

0.1159
0.1286
0.1314

0.0397
0.0524

0.0651
0.0778
0.0397
0.0524

0.0651
0.0778

0.0905
0.1032
0.1159
0.1286
0.1413
0.0905
0.1032

0.1159
0.1286
0.1413

INCHES

1.56

1.81

1.56

2.06

1.56

2.06

2.56

1.56

2.06

2.56

3.06

1.56

2.06

2.56

3.06

3.56

4.06

1.56

2.06

2.56 :
3.06

3.56

4.06

4.56

5.06

•1.56 •
2.06

2.56

3.06

3.56

4.06

. 4.56

5.06

'5.56
1.56 ;

2:06

2.56

.3.06 '

3.56

4.06

4.56

5.06

5.56

1.56

2.06

2.56

3.06

1.56

2.06

2.56

3.06

3.56

4.06

4.56

5.06

5.56

3.56

4.06

4.56

5.06

5.56

MASS

KILOGRAMS
x103

1.048
0.591
2.673
1.477
3.172
2.224
1.201
1.243

0.680
0.738
0.664

2.457
2.183

1.948
1.245
0.620
0.691
1.952

2.019
- 1.261

1^092

0.709.
0.416
0.403

6.356 : ;
1.931 -

1 .867

1 .026

0.975
0.855
0.556
0.650
0.381
0.347

1.716

1.718
0.569

6.820
0.747

0.542

0.696
0.333

0.571
0.311
0.384
0.274

0.465
0.246
0.651
0.247
0.394

0.175
0.179
0.200
0.147
0.227
0.293
0.231

0.279

0.367
0.415

SLUGS
x103

0.0718
0.0405
0.1832
0.1012
0.2174
0.1524
0.0823

0.0852

0.0466
0.0506
0.0455
0.1684

0.1496
0.1335
0.0853
0.0425
0.0473

0.1337
0.1384
0.0864
0.0748
0.0486
0.0285

0.0276
0.0244

0.1323
0.1279
0.0703
0.0668
0.0586
0.0381
0.0445
0.0261
0.0238

0.1176

0.1177
0.0390

0.0561
0.0512

0.0372
0.0477
0.0228

0.0392
0.0213
0.0263
0.0187
0.0319

0.0169
0.0384
0.0169
0.0270
0.0120
0.0122

0.0137
0.0101

0.0156
0.0201
0.0159

0.0191
0.0251
0.0285

•VIBRATION SURVEY MEASUREMENT POINTS
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TABLE III.- MODEL CONFIGURATIONS STUDIED

CONFIGURATION

1.

2.

3.

4.

5.

6.

ISOLATED WING

ORBITER

ORBITER &TANK

SHUTTLE (RIGID CONNECTION)

SHUTTLE (NOMINAL FLEXURE)

SHUTTLE (TUNED FLEXURE)

•INVESTIGATIONS
PERFORMED

P AND F

F

PANDF

P AND F

F

F

•P-PRESSURE DISTRIBUTION (STEADY STATE)

F-FLUTTER BOUNDARY DETERMINATION
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TABLE IV. - FLUTTER TEST DATA

(a) Wing

R U N

13
13
14
14
14
I S
15
is
16
I f ,
16
1ft
17
17
17
17
IS
1H
18
29
79
30
31
32
3?
33
33
34
34
35
35
35
36
3ft

R U M

37
37
3S
38
38
39
40
1.0
40
41
41
41
47
4?

4?

43

43
44

45

45

45
46
46
47
47
48
48
49
49
51
50
51
51

O O I N T

001
002
001
002
003
001
002

2.1
001
002
003
004
001
002
003
004
001
002

3
001
002
001
001
001
001
002

3
001

2
001

2
3 -

ooi
002

P O I N T

001
002
001
002
003
001
001
1.1

002
.1

001
002
on i
00?
003
001
002
001
001
002
003
001
002
001
002
001
002
001
002
001
002
001
002

••103 FL "OREL V A C H
9 F . H A V I O R

1M» FI 0.312
I V

I V
V
V
I X

I X
IV
\ 'f
I V

1"

I'-'
I V
1"

1"
iv
]M

1W

IV

2"
2V
7V
2-"
2V
2"
?M

' 7 V
2M
?.M

?'•'
2M
2W

20'

FSS 0.796
S 0.830

FI 0.932
FSS 0.946

LD 0.666
FI 0.663
FSS 0.679

FI 1.034
FI 1.026

FSS 1.016
FD 0 .98H
LD 0.870
FI 0.863

FSS 0.873
FSS 0.865
FSS 0.700
FSS 0.682

F I 0 . 7 0 U
S 1.357
S 1.346
S 1.244
S 1.113

PI 0 .67B
FSS 0.93*
FSS 0.950

F I 0.944
FSS 0.832
PSS 0 .32 a
F I 0 .736

FSS 0.738
FSS 0.735

FI 0.685
2v FSS 0.705

V O D F L M O D E L V A C H
B E H A V I O R

2V* FI 0 .857
?v* F[, 0.349
?w» LD 1 1.069
2V* LD 1.049
2V* FI 1.030
2v* S 0.593
2v* LD 0.767
2M* FSS 0.762
7V* FSS 0.746
2V* FI 0.956
2M» FSS 0 .927
2V» FSS 0.900
7W* FI 1.046
7V* FI 1.039
7V* FI 1.016
?v« FI 1.107
2V* S 1.104
7.M* S 0 .624
2f* S 0.754
2W* , FI 0.748
2y* FSS 0.737
2f-'» FI O.S13
7M* FSS 0.821
2f* FI 0.933
7«» FSS 0.924
2V* FI 0.992
>M» FSS 0.979
2V* S 1.193
2M* S 1.171
2V» S 1.256
2'V» S 1.262
?«» S 1.370
2V» S 1.353

S STABLE

D Y N A ' - ' I C
( M / V 2 )

S6961.
95735.
5'<685.

111154.
123572.
37521.
97052.

104987.
146817.
17Q503.
186556.
175802.

7D132.
3S174.

1C0619.
104749.
109040.
106S99.
97442 .

179919.
202349 .
208201.
171242.
118289.
11 6920.
139466.
109039.
108011.

96774 .
111159.
116968.
105996.
115162.
123183.

(b)

D Y N A M I C
( N / V 2 I

119324.
129388.
134920.
145533.
165913.
94554.
96903.

114096.
126296.
98381.

123602.
126151.
168611.
1804B3.
180713.
183123.
190101.
96665.
9 2 6 5 H .

106064.
123351.
88946.

106925.
95810.

120118.
127486.
161864.
177C16.
207943 .
187575.
211671.
174738.
217863.

PRFS.
< r > S l )

12. Mi
1 3 . R 7

7.92
16.11
17.9!
12.70
14.07
15.22
21.2"
24 .73
27.06
25. 4«
10.16
12.78
14. 5P

1 5 - l f i
is .s t i
15.49
14.12
26. n«
29.33
30.18
2 4 . P, 2
17.14

16.95
20 .21
15.80
15.65
14.02
16.11
16. .9 5
15.36
16.69
17.85

T R U E V E
( " / S E C !

258.2
253.1
265.3
289.5
7.92.5
218.1
216.6
221.2
317.7
314.4
308.7
300.9
230.4
276.9
275.0
272 .9
220.6
214.7
2 2 3 . 6
394.0
38B.3
366.3
331.2
221.6
299.6
301.3
302.7
269.7
271.5
240.2
241.7
239.8
221 .6
227 .4

L O C I T Y
I F T / S E C )

247 .2
830.5
870.5
949.8
959.6
715.7
710.9
725.7

1042.3
1031.5
1012,9

9 B 7 . 2
920.1
908.7
902.5
895.5
723.9
704.4
733 .3

1292.8
1274.1
1201.9
1086.7

727 .2
983.1
988.7
993.4
884.9
890.8
788.3
793.2
786.8
727 .3
746.2

S I GMA

2 .127
2.438
1.267
2.164
2.356
3.004
3 . 3 7 3
3.501
2.373
2.616
3.1*5
3.168
1.454
1.S75
2.169
2.294
3.654
3 .7B3
3.178
1.890
2.139
2.531
2.546
3.929
2. 124
2.505
1.940
2.422
2.142
3.141
3.265
3.006
3.824
3.865

MASS D E N .
R A T I O

15.22
13. 2b
25.56
14.96
13.74
10. 7b *

9.60
9.25

13.64
11.50
lU.li
10.22
2 2 . 2 6
17 .2V
14. 9<:
14.12

b.86
8.56

10. 19
17.13
m.79
12.79
12.7;

0.24
15.24
12. 9<:
16.69
13.37
Ib . l i
10.31
y .92

10.77
8.47
8.33

F R E O .
( H Z )

i'U.
2b3.

2 7 U .
271.
315.
311.
315.
306.
330.
350.
315.
<:4b.
260.
260.
263.
312.
310.
304.

260.
Hi'
243.

^75.
264.
305.
300.
300.
315.
314.

F L O T T E U
SPEEO I i N D E X

0.3V2
0.411
0.310
0.443
0.467
O..J93
0.414
0.4.JO

0.509
0.549
0.574
0.557
0.352
0.394
0.4^1
0.430
0 .4J9
0.4^4
0 .4 i5
0.564
0.593
0.6J6
0.550
0.457
0.454
0.496
0.439
0.436
0.413
0.443
0.454
0.432
0.451
0.466

Wing and Fuselage

P R E S .
( P S I 1

17.29
IS,. 75
19.56
21.09
24.05
13.70
14.Q4
16.54
18.3C
14.26
17.91
18.28
24.44
26.16
26.19
26.54
27 .55
14.01
13.43
15.37
17. fl?
12.89
15.50
13.89
17.41
18.48
23.46
25.66
30. 14
27.19
30.68
25.33
31.58

LD LOW DAMPING

T R U E V E
P - ' / S E C )

271.1
268.2
328.7
3 2 2 . 7
317.0
1 9 0 . 7
246 .6
2*1.5
230 .3
302.2
293 .2
2S2 .4
318.8
313.7
301.4
331.9
328.0
193.5
244.0
241.1
236.6
260.9
262.3
296. 3
290.7
309.7
303.5
356.1
348.4
373.9
365.0
399.6
390.0

FSS
FD

L O C I T Y
( F T / S E C )

689.6
3S0.1

107B.4
1058.7
1040.1

625 .6
609.2
792.5
755.7
991.7
962. a
926.5

1046.0
1029.3

9 B K . 8
1089.0
1076.3

634.9
B00.6
791.3
776.5
856.1
860.7
972 .4
953.9

1016.0
995.9

1166.4
1143.1
1226.8
1197.5
1311.3
1279.5

STEADY

S I G M A

2.643
2.933
2.037
2 .260
2.693
4 . 2 4 2
2.599
3.190
3.884
1.757
2.345
2.581
2.706
2.992
3.246
2.712
2.882
4.212
2.538
2.975
3.593
2.131
2.535
1.779
2.318
2.169
2.866
2 . 2 7 7
2.795
2. 189
2.592
1.7B5
2 .337

STATE

MASS U i i N .
R A T I O

12.23
11.04
15.89
14.20
12.02

7.63
12.46
10. 15

B. 34
is. 43
13.81
12.55
i l . 9 b
10.82

9.97
11.94
11.23

7.69
12.76

•10.80
9.01

15.<:o
12.77
Id. 20
13.97
14.93
11.30
I t .Z ' t
11.59
14.79
12.4V
IB. 14
13.85

FLUTTER

F R E Q .
( H Z )

26t>.
272.
279 .
290.
316.

300.
2 9 U .
303.
250.
^aa .
270.
300.
310.
310.
313.

295.
3lu.
2 b u .
270.
270.
270.
2 b O .
310.

F L U T T E R
S P E E D I N D E X

0.459
0.478
0.4o8
0.507
0.541
0.408
0.413
0.449
0.472
0.417
0.407
0.472
0.345
0.5b4
0.505
0.569
0.579
0.413
0.404
0.433
0.466
O.J96
0.434
0.411
0 .< toO
O . H 7 4
0.534
0.559
0.606
0.575
0.611
0.555
0.620

DIVERGENT FLUTTER
Fl INTERMITTENT FLUTTER

23



TABLE IV.-CONTINUED

(c) Wing, Fuselage and Tank

52
53
53
54
54

54
55
55
55
56
56
56
56
57
57
58
5H
5H
5H
58
59
59
59
59
59
59
60
60
60
61
62
63
64
64
64
64
64
65
65
65
65

U N

V9
19
19
20
20
20
20
21
21
22
22
22
?3
24
24
25
25 '
25
27
27
27
28
28
28
28
2 H
2S
28
?.8

=01, -IT

001
001
002
001
00?

2.1
001
1.1

002
001

1.1
002

• 2.1 -
001

1.1
.1

001
002
2.1
2 .2
.1

001
1.1
1.2
1.3
1.4

001
1.1
1.2

001
001
001

.1
001
002

2.1
2.2

001
002

2.1
2.2

P O I N T

001
1.1

002
001
1.1

002
?.l

001
002
001
002
003
001
001
002
001
002
003
0;)1
002
or 3
001
002
003
004
4.1

005
5.1

006

MODEL MODEL
B E H A V I O R

2.''* - S
2M» FSS
2'<» FSS
3M» |_D

?-v» FSS
2,M« FSS '
2M» FSS
2M», FSS
?.".« ' FSS
2M« -FSS
2"« FSS
2M* FSS
?>'.* FSS
2M» FSS
2«» FSS
2M* ' FI
2M* S
2M* ' FSS
2M« FSS
2M» FSS

• 2'-l* FSS
2M» FSS
?M» FSS
2-M* FSS
2M» - FSS
2M» S
2M» • s
2.'-* FSS
2M» FI
2M» ' ' S
2M» S
2M* FSS -
2M» -FSS
2M» FSS
2M* FSS
2M* S
2M» FSS
2M» FI
2M* ' S
2M* FSS
2M* FSS

M O D E L M O D E L
B E H A V I O R

- 1«
I M
I'M
I M
1M

IM
1 "-1

I M
IM

- IM
• IM

I M
1"
I M
1-M
IM

IM

1"

I M
IM
I M

IM
1:/

IM
IK
IM
I M
I M
I M

F I
FSS

S
FI
FI
F I
F!
LD

FSS
LO

' FSS
•FSS

S
S
S
Ss
S

LD
FI '

FSS
S
s

LD
FI

FSS
FSS
FSS

• LD

v-ACH

0.587
O . B 4 5
O . S 3 2
0.715
0.705
0 . 6 8 e
0 .775
0.784
0.772
0.899
0.906
0.9C15
0.894
0.944
0.932
0.990
0.973
0.913
0.856
0.921
1.100
1.105
1 .087
1.077
1.073
1.056
1.131
1.107
1.121
1 .238
1.346
0.885
0.744
0.723
0.702
0.632
0.680
1.002
0.978
0.938
0.874

(d)

I 'ACH

0.671
0.665
0.673
0 .847
0.83S
0 .842
0.803
0.772
0.754
0.947
0.909
0.910
0 .575
1.330
1.325
1 .093
1.112
1.101
0.977
0.958
0.910
0 . 7 6 V
0.467
0.896
0.909
0.793
0.795
0.736
0.679

D Y \ ' A " r c
|.\V"2)

93414.

113215.
117244.
10052B.
115459.
109010.
1095B2 .
11448B.
11S550.
11382?.
121001 .
13071H.
141739.
155693.
157042.
1S0115.
1H1185 .
157004.
132701.
151126.
186142.
188494.
188381.
183482.
188506.
185107.
204015,
189588.
198355.
217723.
215941.
119489.
108780.
109193.
118945.
99129.

116380.
163780.
168271.
152000.
125955.

or?ES .
("S! 1

13.54
16-. 41
16.99
14.5."
16.74
15.CC
15. P.P.
16.59
17.18
15.50
17.54
IS. 05
20.54
2 2 . 5 7
22 .76
26.11
26. ?6
22.76
1 9 . ? 3
23.35
26. 9S
27.32
27.31
27 .32
27 .32
26. = 3
29.57
27.48
28.75
31.56
31.30
17.32
15.77
15.83
17.24
14.37
16.87
23.74
24.39
22.03
IBi 26

Wing, Fuselage,

D Y N A M I C
( N / M 2 )

106548.
106718.
108835.
111838.
126919.
136933.
124400.
99556.

109565.
105388.
134074.
142454.
92755.

170303.
208968.
93413.

171939.
197209.
148236.
174558.
164237.

32570.
17190.
30524.

126922.
134249.
138309.
108626.
37254.

P R E S .
( P S I I

15.44
15.47
15.77
16.21
l f i . 4 0
19. P5
18.03
14.43
1 5 . S ?,
15.27
19.43

2 0 . 5 5
13.44
24. 6P.
30.29-
13.54
24 .92
23.59
21.49
25.30
23.81
11.97

2 .49
11.67
13.40
19.46
20 .05
15.74
12.64

T R U E V E L O C I T Y
( v / S E C ) ( F T / S E C )

1H6.7 612.8
272.0 3 9 2 . 3
266.7 875.1
232.0 761.4
224 .4 736.5
219.1 716.3
249 .1 K 1 7 . 5
250 .7 B 2 2 . 5
247.0 810.4
284. 1 932 .2
285.0 938 .5
2 B 6 . 0 938.4
2S1.5 923.6
292 .8 960.9
289.6 950.1
304.0 997.4
296.9 973 .3
2 B O ; 2 919.3
263.4 664.4
2 S 2 . 5 926 .9
334.4 1097.2
335.1 1099.7
330.7 1084.9
326i9 1072.6
325 .2 1067.2
316.1 1037.1-
334.6 1097.9
329 .9 1082.5
333.5 1094-.7
364.5 1195.9
383.7 1258.9
279.3 916.4
241.1 - 791.2
234.6 769.9
2 2 7 . 2 74S-.6
206 .0 675.8
219.9 721.6
305.0 1000.8
299.1 981.5
286.7 .940.7
263/0 ' 879.3

S I GMA

4. 369
2.497
2.6oiJ
3.046
3.736
3.705
2 . 6 7 9
2 . 9 7 2
3. 170
2.300
2.413
2 .607
2 .917

'2 .961
3.055
3.180
3.356
3 .262
3.119
3 .294
2.715
2 .737
2 i B 1 0
2 . 8 7 7
2 .907
3 .023
2 . 9 7 2
2 .642
2 .907

'2 - .67S
2i 393
2.498
3.051
3.235
3.758
3.812
3.925
2.871
3.068
3.016
2.861

MASS D E N .
R A T I O

7.41
12.97
12.04
10.62

6 . 60
6.7<-

11.23

10. 9J
10.21
14.06
1 3.42
12. *<L

11.10
10.93
10.60
10.16

V . 6 3
V.9 i

10.36
9.83

11.92
11.53
11.52
11.25
11.14
10.71
10. B9
11.39
•11.14
12.11
13.53
12.96
10.61
10.01

8.62
8.49
8.25

11.26
10.55
10.73
11.32

FRE-J.
(HZ )

273.
265.
300.
310.
312.
295.
295.
300.
270 .
2 7 3 .
285.
295.
315.
30 J.
262.

<:S6.
186.
286.
320.
312.
31^.
310.
316.

320.
320.
320.

275.
296.
295.
310.

312.
310.

300.
260.

F L U T T E R
SPEEO I K O t X

0.405
0.447
0.455
0.421
0.431

0.4.;9
0.440
0.449

0.457
0.448
U . 4 o 2
0 . 4 o O
0 . 3 U O
0.524
0.326
0.564
0.555
0.326
0.464
0.533
0.373
0 . 5 7 7
0 . 5 7 7
0 . 3 7 7
0 . 5 7 7
0 .572
0.6UO
0.378
0.592
0.620
0.617
0.459
0.43'B
0.439
0 .45B
0.416
0.453
0.538
0.545
0.518
0.471

Tank, and Rigid SRM

T R U E V E L O C I T Y
( . " . /SECI ( F T / S E C )

213.3 699.8
211.1 692.8
214.3 703.1
261 .5 857;9
2 5 8 . 7 -849.0
259.5 851.6
249 .1 817.3
2 4 7 . 0 810.5
239.0 7 8 4 . 2 '
297 .2 '975.1
283.9 931.4
284.0 93T.S
184. 9 - 5 0 6 . 7
386.4 1268.0
3R1.8 1252.8
337.6 1107.7
336.1 1102.9
330.3 1083.6
303.1 994.5
296.1 971.5
281 .4 923.2
247 .1 810.7
149.9 - 4 9 1 . 9
284. 6 933.7
?93.6 963.5
352.1 8 2 7 . 2
?57 .2 843.8
231.8 760.6-
214.0 7 0 2 . 1 -

S I GMA

3.821
3.905

• 3.866
2.668
3.092
3.316
3 i 2 7 0
2.661
3.129
1.946

• 2 . 7 1 4
2.881
4 .425
1.860
2.338
1.337
2.482
2.949
2.632
3.248
3.364
2.206
1.247
1.622
2.401
3.446
3.411
3.298
3.10B

MASS D £ N .
RAT 10

0 . 4 7
6 .29
6.37

12.13
10.47

V . 7 6
9.90

12.17
10.35
16.64
11.93
11.24

7.32
17.41 '
13.85
24.22
13.05
10.98
12.30

9.97
9.57

14.68
25.90
IV. 97
13.46
9.40
9.49
9.82

10.42

F K E U .
( H Z )

320.
326.

290.
314.

' 310.
310.
294.
31U.
2 6 2 .
317.
3 0 M .

306.
332.
335.

260.
310.
312.
315.
310.
i!4.

F L U T T t K
SPEED I i M D t X

U . 4 3 4
0.434
0.438
0 .444

0.473
0.492

.0.468
0.419
0.44J
0.4J1
0.466
O . b O l
0.404
0.548
0.6U7
0.406
0.551
0.390
0.311
0.555
0.536
0.302
0.174
0.377
0.473
O.4b7
0.494
0.4J8

' 0 .3V2



TABLE IV. - CONCLUDED

(e) Wing, Fuselage, Tank and SRM (Flexure I)

DC) I NT •MODEL MODEL •••ACH
BEHAVIOR

AA
A7
A9
A9
A9
70
70
70
71
71
7?
7?
72
73
73
73
74
74

75
76
77
78
79
79
79
79
80
80
80

O01
001

.1
001
002

1
1.1

002
.1

001
.1
.2

001
001
1.1

002
001
002
001
001
001
001

.1

.2
001
002

.1
001
002

2M* FSS
2,M* FSS
2-'-'» S
2M* FSS
?<•'•
5M
5M
5M
AM
A.M
AM
A''.
A'-'
&••'•
AM
AM
AM
AM
AM
AM
AM
AM
A'M
AM
AM
AM
AM
AM
AM

FSS
FI

FSS
FSS
FSS
FSS
r I

FSS
FSS
FI

FSS
FSS
S

FSS
S
S
S

FSS
F I

FSS
FSS
FSS
FSS
FSS
FSS

0.635
0.874
0.845
0.791
0.729
0.776
0 . ?. 1 S
0.779
0.895
0.391
0.960
C.952
0.946
0.976
0.951
0.916
1.073
0.919
1 .121
1.217
1.321
0.917
O.S59
0.341
0.847
0.824
0.660
0.662
0.657

CYMAVIC
I.N/M2)

1T2440.
125769.
104252.
111031.
112225.
135526.
128469.
124381.
155919.
164993.
1 4 9 3 5 fi .
161750.
166140.
18300S.
172217.
158893.
201990.
136234.
209194.
214990.
213B39.
126972.
95719.
101472.
11018H.
120471.
93679.
95302.
99380.

PRES.
(PS! 1

14. PS
lfl.23
15.11
15.10
16. 7A
15.29
1°.62
1 S . 0 3
24.19
23.92
21. A5
23.45
24.08
26.53
24.96
23.03
29.28
19.75
3P.32
31.16
31.00
18.40
13.87
14.71
15.97
17. 4A
13.58
13.81
14.40

TRUE VELOCITY
(M/SEC)

208.9
278.3
273.8
255.9
235.0
?49.0
260.2
249.1
232.7
231.2
300.0
295.6
294.3
300.5
293.9
234.4
326.1
2B3.5
339.2
358.7
383.8
288.2
276.3
269.6
271.5
263.3
214.0
214.6
212.0

(FT/SECI

535.5
913.3
39.8.6
339.5
77].2
316.9
H53.9
817.4
927.5
922.5
984.2
973.1
965.5
986.1
964.3
933.2
1070.0
930.4

1113.1
1177.1
1259.4
945.5
906.5
884.6
390.9
863.9
702.2
704.2
695.6

SIG.MA

3.82V
2.648
2.267
2.768
3.313
2.777
3.094
3.269
3.400
3.404
2.706
3.0JO
3. 130
3.305
3.253
3.204
3.0V8
2.764
2.965
2.725
2. 368
2.494
2.045
2.277
2.438
2.835
3.336
3.375
3.607

MASS Osrc.
RATIO

d.46
12.23
14.20
11.70
9.77
11.00

10.46
9.90
9.50
V.51

11.96
1J.7V
10.34
9. BO
V.95

10.1 1
10.45
11.71
10.92
ll.ua
13.68
12.98
15. B3
14.22

13.211
11.42
9.70
9.59
6.VS

FRt^.
ti-U)

JlV.
20B.

300.
310.
300.
293.
305.
330.
330.
320.
330.
340.
340.
310.
310.

295.

307.
270.
280.
27s.
295.
308.
318.
310.

FLUTTER
SHEEL) i.-iL)

0.425
0.471
0.429
0.443
0.445
0.4jl
0.476
0.468
0.543
0.340
0.513
0.334
0.541
0.568
0.551
0.5jO
0.5V7
0.4VO
0.608
0.616
0.614
0.473
0.411
0.423
0.441
0.461
0.406
0.410
0.41V

(f} Wing, Fuselage, Tank and SRM (Flexure II)

U'-l 00 I NT MODEL MODEL MACH

BEHAVIOR

81

81
81
82
82
82
83
83
83
84
84
85
8ft
87
87
88
88

89

89
90.
9f)
90

91
92
9?
93
94

nni
l .1

002
.1

001
OH2

.1

.2
001

.1
. 001
001
001

.1
oni
. i

001
. 1

001
. 1

001
002
001
001

2
001
001

A"
AM
A'-'
AM
AM
AiV

A'-'
A'-'
6M
6'-'
A"
A''1

AM
6M
A'-1
AM
A'-'
AM
AM
AM
6"
A'-'
AM
6V

A'-:
AM
AM

FI
FSS
FSS
FI

FSS
FSS
FI

F.SS
FSS
FI

FSS
FSS
FSS
r j

FSS
FI

FSS
r i

FSS
FI

FSS
FSS
FSS
S

FSS
S

FSS

0.675
C.A64
0.651
0.787
0.786
0.7t<2
0 . 7 2 a
0.736
0.731
0.95V
0.936
C.90o
0.853
0.35b
O.S46
0.825
0.506
0.703
0.702
1 .006
0.986
0.920
0.951
1 .:isv
0.99V
1 .212
0.923

TYNA^'IC
(N/M2 1

91354.
9050.".
97453.
H9479.
9S638.
1026S3.
B7532.
94451.
100547.
146029.
146373.
106747.
110811.
100297.
1J7357.
93975.
93569.
37367.
96376.
165962.
183312.
149524.
139327.
217. H 10.

174H7-.

215703.
119143.

po£5 .

(PS I 1

13.24
13.13
14.12
12.97
14 ,3C
'1 4 . « ••'

,12.70
13.69
14.57
21.17
21.22
15.47
15. .'6
14.54
15.55
13. A2
14.29
l?.ftA
13.97
2 4 . '. 6
26.57
21.57
20.19
30.R5
25.35
31.27
17.27

TRUE V
(•••/SEC)

219.6
215.9
214.4
252.1
251.0
? 4 .-; . 7
237.6
236.5
233.2
302.6
2V4.1
2 a a . 9
269. B
273.7
268.7
265.2
257.9
225.7
226. ;
'i '.; 9 • l
3 0 3 . 1
2B1.7
294.7
332.2
•JOV.H
359.5
2B9.2

ELOCITY S I Gi'.A
(FT/SEC) •

720
7oe
703
B?7
823
816
779
776
765
992
964
947
bi)5
B9rt
8S1
870
346
74-J
741

1:)14
994
924
967

10SO
100V
1179
949

.6

.6

.6

.1

.7
• 0
.7
.1
.1
.3
.9
.9
.4
.2
.3
.3
.1
.5
.6
. l
.6
.4

.0

.1

.3

.rt

.0

3.090
3.16V
3.457
2.297
2.553
2.70-
2.532
2.754
3.017
2.602
2.761
2.066
2.4a2

2 . 1 b 3
2.425
2.179
2 . 4 1 b
2.7VO
3. 077
2 .OJ4
3.254
3.073
2.617
3.145
3.012
2.721
2.323

MASS OEM
RATIO

10.43

l'J.22
9.36
14. 10
12.6o
11. VO
12.7V
11. Vo
10.73
12.44

11.73
15.52
13.04
14. Bi
13.35
14.86
lj. 3V
11.37
L'j. 32
1 1 . 4 J
V . V5
10.54

1 2 . 3 7
1 J . 3 u
10.75
11. VO
1 J. 94

FKEu.
(HZ 1

305.
310.
310.
2 b J .
2V'J.
2Vi .
300 .
3UO .
31J.
320.
320.
^<;5.
20J.

270.
280.
2bU.
ioO.
JO J.
3uJ.
330.
335.
3J5.
32U.

330.

300.

FLUTTcK
SPEEu IJMUL.

0.401
U . 4 J 0

o.<Ub
0.iV7
0.417
0.4̂ 6
0 . j V 3
0.406
0.421
0.5GB
0.5JB
J .4 j>4

U.442

0.4*1
0.4JS
0.4J7
0.417
G. 393
J.412
0.5-41.
0.56V
0.514
0.4V6
0.013

0.556
0.017
0.458
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TABLE V.- AERODYNAMIC COEFFICIENTS FOR AN
ORBITER FUSELAGE

EXPERIMENT

ANALYSIS

CLa(DEG~1)

0.0041

0.00384

CMa(DEG-1)

0.0015

0.00173
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TABLE VI.- SHUTTLE SYMMETRIC FREE-FREE NORMAL MODES FOR NOMINAL ELEVONS

MODE
NO.

'1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

ORDER IN
FLUTTER
ANALYSIS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

FREQ,
Hz

2.25

2.77

3.07

3.91

4.04

4.33

5.01

5.17

5.51

6.17

6.96

7.36

8.13

8.88

10.36

10.63

10.89

11.23

11.98

12.59

12.97

14.11

14.30

15.14

15.30

16.83

17.06

17.93

17.99

18.62

19.69

20.01

20.69

22.40

23.81

GEN
WEIGHT,
LB

82,088

376,078

231,358

319,346

100,841

60,322

12,607

944

34,416

340,368

273,739

35,857

41,131

100,011

624

1,318

11,567

1,238

1,425

10,464

13,611

2,932

25,771

363

4,014

36,957

14,801

6,382

13,470

9,136

20,870

377

1,163

14,638

6,547

GEN ,
MASS,
Kg

37,235

170,589

104,944

144,855

45,741

27,362
5,719

428

15,611

154,391

124,168

16,265

18,657

45,365
283

598

5,247
562

646

4,746

6,174

1,330

11,690

165

1,821

16,764

6,714

2,895

6,110

4,144
9,467

171

528

6,640

2,970

PREDOMINANT MODAL DESCRIPTION

FUSELAGE 1st VERTICAL BENDING
SRB YAW

SRB PITCH

SHUTTLE LONGITUDNIAL (FUSELAGE VS OXYGEN)

SRB 1st LATERAL BENDING

ET 1st VERTICAL BENDING

PAYLOAD. PITCH

WING 1st BENDING

ET LONGITUDINAL (OXYGEN VS HYDROGEN)

ET/SRB LONGTIUDINAL (SRB VS HYDROGEN)

SRB 1st VERTICAL BENDING

PAYLOAD 1st VERTICAL BENDING

FUSELAGE 2nd VERTICAL BENDING

ET 2nd VERTICAL BENDING

INBOARD ELEVON ROTATION

FUSELAGE PITCH (ON INTERSTAGE FITTINGS)

SRB 2nd LATERAL BENDING

FUSELAGE VERTICAL (ON INTERSTAGE FITTINGS)

WING 1st TORSION; OUTBOARD ELEVON ROTATION

AFT CREW COMPARTMENT TRUNNION

PAYLOAD 1st LONGITUDINAL

FIN

ET 1st LOCAL OXYGEN TANK VERTICAL BENDING

WING 2nd BENDING; OUTBOARD ELEVON TORSION

FORWARD CREW COMPARTMENT TRUNNION

SRB 2nd VERTICAL BENDING

FUSELAGE 1st LONGITUDINAL

FUSELAGE 3rd VERTICAL BENDING

ET 2nd LOCAL OXYGEN TANK VERTICAL BENDING

SRB 3rd VERTICAL BENDING

SRB 3rd LATERAL BENDING

INBOARD ELEVON TORSION
WING 2nd TORSION; OUTBOARD ELEVON ROTATION

ET 3rd VERTICAL BENDING

FUSELAGE 2nd LONGITUDINAL
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TABLE VII.- EFFECT OF AERODYNAMIC INTER-
ACTION ON FLUTTER SPEED OF A
1/80th-SCALE SHUTTLE MODEL

CONFIGURATION

ORBITER •

ORBITER/ET

SHUTTLE
(RIGID COUPLING)

SHUTTLE
(NOMINAL FLEXURES)

SHUTTLE
(TUNED FLEXURES)

M

0.7

0.9

0.7

0.9

0.7

0.9

0.7

0.9

0.7

0.9

VF/VF OF WING ALONE
ANALYSIS

1.05

1.02

1.02

0.97

1.00

0.95

1.00

0.95

1.00

0.95

TEST

1.07

1.01

1.03

1.02

1.01

1.06

0.99

1.03

0.97

0.97

28



MODEL

0.594m

1

FULL SCALE

23.8m

Figure 1. — Space Shuttle Design Studied
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WING APEX AT X = 0.174m FROM ORBITER NOSE

0.303m

Figure 2.— Orbiter Wing Model
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32* 0 42 • >6*x'

• 3 3 • 4 3
-34

N* VIBRATION SURVEY POINTS
POINT 11 MEASURED AT Y = 0.0883m
POINT 17 MEASURED AT Y = 0.1120m

Figure 5.- Mass Point and Vibration Measurement Locations
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(a) FREQUENCY = 169.1 Hz

FIRST BENDING MODE

DAMPING COEFFICIENT = .008

VIB
NODE*

NORMALIZED
DEFLECTION

VIB
NODE

NORMALIZED
DEFLECTION

VIB
NODE

NORMALIZED
DEFLECTION

1
2
3
4
5
6
7
8
9
10
11
12
13
14

0.72

0.82

0.87

1.0C

0.50

0.26

0.36

0.44

0.49

0.57

0.62

0.08

0.14

0.18

15

16
17
18

19

20

21

22

23

24

25

26

27

28

0.22

0.26

0.29
0.33

0.18

0.23

0.01

0.03

0.05

6.06

0.08

0..10

0.11

0.12

29
30
31

32
33

34

35

36

37

38

39

40

0.01

0.01

0.01

0.01

0.02

(a) 1st Mode
*See First Column of Table

Figure 6.- Mode Shape Data, 1/80th-Scale Wing
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(b) FREQUENCY =449.5 Hz

FIRST TORSION MODE

DAMPING COEFFICIENT = .012

VIB
NODE*

NORMALIZED
DEFLECTION

VIB
NODE

NORMALIZED
DEFLECTION

VIB
: NODE

NORMALIZED
DEFLECTION

1

2

3

4

5

6
7

8
9

10
11

12
13
14

-0.565

0.022

0.435

1.000

-0.913

-0.892

-0.717
-0.348

0.109

0.435

0.825

-0.500

-0.500

-0.390

15

16

17

18

19

20

21

22

23

24

25

26

27

28

-0.152

0.109

0.326
0.630

0.260

0.565

-0.109

-0.195
-0.195
-0.130
-0.044
0.109

0.175

0.410

29

30

31

32

33

34

35

36

37

38

39

40

-0.022

-0.044

0

0

-0.022

-0.022

-0.022

-0.022

-0.022

0.066
0.109

0.240

(b) 2nd Mode

Figure 6.- Continued

*See First Column of Table II



(c) FREQUENCY = 548.0 Hz

SECOND BENDING MODE

DAMPING COEFFICIENT = .019

VIB
NODE*

NORMALIZED
DEFLECTION

VIB
NODE

NORMALIZED
DEFLECTION

VIB
NODE

NORMALIZED
DEFLECTION

1

2
3

4
5
6
7
8
9
10
11
12
13
14

0.59
0.79
0.90
1.0
0.07
-0.28
-0.17
-0.14
-0.14
-0.17
-0.24
-0.21
-0.24
-0.31

15
16
17
18
19
20
21
22
23
24
25
26
27
28

-0.38
-0.48
-0.62
-0.79
-0.59
-0.83
-0.03
-0.07
-0.10
-0.17
-0.24
-0.34
-0.48
-0.69

29
30
31
32
33
34
35
36
37
38
39
40

0

-0.03

-0.07

-0.10

-0.21

-0.41

(c) 3rd Mode

Figure 6.— Continued

*See First Column of Table II
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(d) FREQUENCY = 912.1 Hz

SECOND TORSION MODE

DAMPING COEFFICIENT = .02

VIB
NODE*

NORMALIZED
DEFLECTION

VIB
NODE

NORMALIZED
DEFLECTION

VIB
NODE

NORMALIZED
DEFLECTION

1

2

3

4

5

6

7

8

9
10
11
12
13
14

-1.00
-0.54
-0.12
0.72
-0.59
0.30
-0.16
-0.23
0.03
0.28
0.76
0.50
0.36
0.18

15
16
17
18
19
20
21
22
23
24
25
26
27
28

0.09
0.09
0.11
0.14
-0.086

-0.26
0.16
0.25
0.23
0.14
0.03
-0.108

-0.22
-0.55

29
30
31
32
33
34
35
36
37
38
39
40

0

0.07

0

0

0.02

0.04

0.06

0.02

-0.05

-0.17

-0.31

-0.74

(d) 4th Mode

Figure 6.— Continued

•See First Column of Table II
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(e) FREQUENCY = 1045.9 Hz

THIRD BENDING MODE

DAMPING COEFFICIENT = .021

VIB
NODE*

NORMALIZED
DEFLECTION

VIB
NODE

NORMALIZED
DEFLECTION

VIB
NODE

NORMALIZED
DEFLECTION

1

2

3

4

5

6

7

8

g
10
11
12

13

14

-0.26
0.13
0.48

1.00

-0.20

0.32

-0.09
-0.29
-0.32

-0.31

-0.27

0.48

0.31

0.08

15

16

17

18

19

20

21

22

23

24

25

26

27

28

-0.12

-0.19
-0.23
-0.27
-0.06
0.04
0.15
0.23

0.18

0.09
0.03

0.04

0.11

0.35

29

30

31

32

33

34

35

36

37

38

39

40

0.03

0.07

0.03

0.03

0.03

0.04

0.04

0.03

0.04

0.13

0.23

0.65

(e) 5th Mode

Figure 6.— Concluded

*See First Column of Table II
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f = 124.0 Hz f = 242.9 Hz

NODE: 1

NODE NO.

MEASURED DEFLECTjONS FOR MODE 1

MEASURED DEFLECTIONS FOR MODE 2

1

.78

.41

2

.55

.43

3

.32

.46

4

.09

.53

5

-.18

.75

6

-.40.

1.00

(a) Nominal Flexures

f = 222.0 HZ f = 438.0 Hz

NODE NO.

MEASURED DEFLECTIONS FOR MODE 1

MEASURED DEFLECTIONS FOR MODE 2

1

1.5

1.0

2

.89

.50'

3

.39

.40,

4

.07

.40

5

-.34

.60

6

-.80

.90

(b) Tuned Flexures

Figure 7.- Mode Shape Data, 1/80th-Scale Rigid SRB on Flexible
Attachments
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(a) Isolated Wing

Figure 8.— Variation of Measured Dynamic Pressure with Mach Number
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(b) Orbiter

Figure 8.- Continued
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(c) Orbiter/External Tank

Figure 8.- Continued
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(d) Shuttle, Rigid SRB Attachments

Figure 8.— Continued
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(e) Shuttle, Nominal SRB Attachments

Figure 8.— Continued
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(f) Shuttle, Tuned SRB Attachments

Figure 8.— Concluded



.2

ACp 0

-.1

O

D

ORBITERTANK
Y/s = 0.4

M = 0 . 6

O TOP SURFACE

D BOTTOM SURFACE

ACp = Cp (a) -Cp (0)

a = -3°

ACp 0

-.1 a
a

o

FULL-UP SHUTTLE

-.2

ACp 0

-.1
D

D

WING ALONE

-.2

0.2 0.4 0.6 0.8 1.0

Figure 9.— Measured Pressures on Wing Surfaces Due to Incidence



ORBITER FUSELAGE

.SLENDER BODY
ELEMENTS

SOLID ROCKET BOOSTER
(SRB)

WING

EXTERNAL TANK
(ET)

Figure 10.- Aerodynamic Idealization of Space Shuttle
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GRID 3

\\ \ \\\\ \x\ \ \
\\\ \

VAX
N\\\ T

\
VARIATIONS IN GRID 3

GRIDNO.

NO.
OF

BOXES

CHORDWISE

SPANWISE
(INNER PANEL)

SPANWISE
(OUTERPANEL)

3.0

8

5

7

3.1

7

5

7

3.2

10

5

7

3.3

10

6

7

3.4

8

3

7

3.5

6

3

7

3.6

8

6

7

3.7

8

5

5

3.8

8

5

9

Figure 11.— Aerodynamic Grids Studied on Orbiter Wing
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Figure 12.— Effect of Misaligned Aerodynamic Grid on Lift and Pressure Distributions on the Wing.
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REAL PART IMAGINARY PART

k = 0.07

k = 0.12

k = 0.26

k = 0.61

Figure 14. - Oscillatory Pressures on Isolated Wing at M = 0.6 for Pitch About the Apex

50



(2) —
(3) ——
(4) ....

4 I-(5) O

REFLECTION PLANE AT WING ROOT
GAP BETWEEN ROOT & CENTER LINE
UNPITCHED PLATE IN GAP
PITCHED PLATE IN GAP
FUSELAGE -
MODELLED

9
7

M = 0.7
a= 1 RADIAN

\L
-.25 0.0 0.750.25 0.50

Y/s

Figure 15. - Effect of Wing Root Condition on Spanwise Lift Distribution.

1.0
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i >

Figure 16. — Damping and Frequency as a Function of Airspeed for the Isolated 1/80th-Scale Wing
Endplated at its Root
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Figure 17.— Damping and Frequency as a Function of Airspeed for the 1/80th-Scale Wing in the Presence
of the Other Shuttle Components (Fuselage, External Tank and Solid Rocket Booster)
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M

4.0
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o= 1.0

.45

.5 .6 .7 .8 .9 1.0
M
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Figure 18.— Calculated Flutter Speed Indices for the Isolated 1/80th-Scale Wing and the
Wing in the Presence of the Orbiter Fuselage as Functions of Mach Number and
Air Density
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(a) Isolated Wing

Figure 19.— Variation of Mass Density Ratio, Flutter Frequency Index and Flutter Speed Index with
Mach Number for the 1 /80th-Scale Shuttle Model
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Figure 19.— Continued
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(c) Orbiter/External Tank

Figure 19.- Continued
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1.2 1.4

59



20

10

.6

.5

.4

.6

.5

.4

.3

0.6

ANALYSIS:-

TEST POINTS:

• FLUTTER

0 INTERMITTENT FLUTTER

O STABLE

0.8 1.0

M

(f) Shuttle with Tuned Attachments

Figure 19.— Concluded
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Figure 20.— Test Flutter Boundaries Adjusted to a = 3.0
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Figure 21.- Analytical Flutter Boundaries at a = 3.0
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Figure 22.- Shuttle Flutter Speeds at a = 3.0 for Various SRB Attachment Flexibilities
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Figure 24.— Steady State Pressure Distributions on the Inner Wino
at M = 0.6
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Figure 25.- Steady State Pressure Distributions on the Outer Wing
at M = 0.6
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Figure 26.— Steady State Pressure Distributions on the Inner Wing
at M = 0.8
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Figure 27.— Steady State Pressure Distributions on the Outer Wing at
M = 0.8
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Figure 28.— Calculated Spanwise Loadings and Centers of Pressure for Various
Shuttle Configurations at Angle of Incidence
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Figure 29.— Calculated Spanwise Loadings and Centers of Pressure for Various
Shuttle Configurations — Bodies at Zero Incidence
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TO

Figure 30.— Damping and Frequency as a Function of Airspeed for the Full-Scale Wing
Endplated at its Root.



Figure 31.— Damping and Frequency as a Function of Airspeed for the Full-Scale Wing in
Presence of the Orbiter Fuselage

the
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Figure 32.— Damping and Frequency as a Function of Airspeed for the Full-Scale Wing in the
Presence of Other Shuttle Components (Fuselage, External Tank and Solid Rocket
Booster)
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Figure 33.— Damping and Frequency as a Function of Airspeed for the Full-Scale Wing in the
Presence of Other Shuttle Components (Fuselage, External Tank and Solid Rocket
Booster). Only Five Modes Used]
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